Daniel, B. K. (2019). Big data and data science: 
a  critical  review  of  issues  for  educational 
research.  British  Journal  of  Educational 
Technology,  50(1),  101-113. 
https://doi.org/10.1111/bjet.12595 
Etzrodt, K., Gentzel, P., Utz, S., & Engesser, S. 
(2022).  Human-machine-communication: 
introduction to the special issue. Journalism, 
67(4),  439-448. 
https://doi.org/10.1007/s11616-022-00754-8 
Flindt, N., Magarian, M., & Hohl, G. (2021). The 
creation of brain-stimulating Online Learning 
content  for  a  young  migrant  and  refugee 
project.  Muallim  Journal  of  Social  Science 
and  Humanities,  5(2),  1-11. 
https://doi.org/10.33306/mjssh/116 
Gierl, M. J., & Lai, H. (2018). Using automatic 
item  generation  to  create  solutions  and 
rationales for computerized formative testing. 
Appl.  Psychol.  Measurement,  42(1), 42-57. 
doi: 
https://doi.org/10.1177/0146621617726788 
Goksel,  N.,  &  Bozkurt,  A.  (2019).  Artificial 
intelligence  in  education:  Current  insights 
and  future  perspectives.  In  Handbook  of 
Research  on  Learning  in  the  Age  of 
Transhumanism (pp. 224–236). IGI Global. 
doi:  https://doi.org/10.4018/978-1-5225-
8431-5.ch014 
Hendradi,  P.,  Abd  Ghani,  M.  K.,                          
Mahfuzah,  S.  N.,  Yudatama,  U.,                        
Prabowo, N. A., & Widyanto, R. A. (2020). 
Artificial intelligence influence in education 
4.0  to  architecture  cloud  based  e-learning 
system.  International  Journal  of  Artificial 
Intelligence  Research,  4(1),  30-38. 
https://doi.org/10.29099/ijair.v4i1.109 
Hew,  K.  F.,  Lan,  M.,  Tang,  Y.,  Jia,  C.,  &                             
Lo,  C.  K.  (2019).  Where  is  the  “theory” 
within  the  field  of  educational  technology 
research?  British  Journal  of  Educational 
Technology:  Journal  of  the  Council  for 
Educational  Technology,  50(3),  956-971. 
doi: https://doi.org/10.1111/bjet.12770 
Huang, A. Y. Q., Lu, O. H. T., Huang, J. C. H., 
Yin, C. J., & Yang, S. J. H. (2020). Predicting 
students’  academic  performance  by  using 
educational big data and learning analytics: 
evaluation  of  classification  methods  and 
learning  logs.  Interactive  Learning 
Environments,  28(2),  206–230.  doi: 
https://doi.org/10.1080/10494820.2019.1636
086 
Kumar  Basak,  S.,  Wotto,  M.,  &  Bélanger,  P. 
(2018).  E-learning,  M-learning  and                          
D-learning:  Conceptual  definition  and 
comparative  analysis.  E-Learning  and 
Digital  Media,  15(4),  191-216. 
https://doi.org/10.1177/2042753018785180 
Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. 
J.  H.,  Ogata,  H.,  …  &  Tsai,  C.-C.  (2020). 
Challenges and future directions of big data 
and  artificial  intelligence  in  education. 
Frontiers  in  Psychology,  11,  580820. 
https://doi.org/10.3389/fpsyg.2020.580820 
Niemi,  M.,  Manhica,  H.,  Gunnarsson,  D.,                 
Ståhle,  G.,  Larsson,  S.,  &  Saboonchi,  F. 
(2019).  A  scoping  review  and  conceptual 
model  of  social  participation  and  mental 
health among refugees and asylum seekers. 
International  Journal  of  Environmental 
Research  and  Public  Health,  16(20),  4027. 
https://doi.org/10.3390/ijerph16204027 
Rakhimov,  T.,  &  Mukhamediev,  M.  (2022). 
Peculiarities  of  the  implementation  of  the 
principles  of  the  education  of  the  future 
analysis  of  the  main  dilemmas.  Futurity 
Education,  2(3),  4-13. 
https://doi.org/10.57125/FED/2022.10.11.29 
Razaulla,  S.  M.,  Pasha,  M.,  &  Farooq,  M.  U. 
(2022).  Integration  of  machine  learning  in 
education: challenges,  issues and  trends.  In 
Machine learning and internet of things for 
societal  issues  (pp.  23-34).  Singapore: 
Springer  Nature  Singapore. 
https://link.springer.com/chapter/10.1007/97
8-981-16-5090-1_2 
Ryan, R. M., & Deci, E. L. (2020). Intrinsic and 
extrinsic  motivation  from  a  self-
determination  theory  perspective: 
Definitions,  theory,  practices,  and  future 
directions.  Contemporary  educational 
psychology,  61,  101860. 
https://doi.org/10.1016/j.cedpsych.2020.101
860 
Salnyk,  I.,  Grin,  L.,  Yefimov,  D.,  &                   
Beztsinna, Z. (2023). The  Future of Higher 
Education:  Implementation  of  Virtual  and 
Augmented  Reality  in  the  Educational 
Process.  Futurity  Education,  3(3),  46-61. 
https://doi.org/10.57125/FED.2023.09.25.03 
Türkmen, H. (2023). A Comparative Analysis of 
Karplus Learning Cycle Model and Ausubel 
Meaningful  Learning  Model  on  Children’s 
Environmental Pollution Cognition. Futurity 
Education,  3(3),  106-129. 
https://doi.org/10.57125/FED.2023.09.25.06 
Xie,  P.,  Cao,  Q.,  Li,  X.,  Yang,  Y.,  &  Yu,  L. 
(2022). The effects of social participation on 
social  integration.  Frontiers  in  Psychology, 
13,  919592. 
https://doi.org/10.3389/fpsyg.2022.919592